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Theory and experiment on the
low-Reynolds-number expansion and contraction

of a bubble pinned at a submerged tube tip

By HARRIS WONG†, DAVID RUMSCHITZKI
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(Received 8 December 1995 and in revised form 11 September 1997)

The expansion and contraction of a bubble pinned at a submerged tube tip and driven
by constant gas flow rate Q are studied both theoretically and experimentally for
Reynolds number Re' 1. Bubble shape, gas pressure, surface velocities, and
extrapolated detached bubble volume are determined by a boundary integral method
for various Bond (Bo¯ ρga#}σ) and capillary (Ca¯µQ}σa#) numbers, where a is the
capillary radius, ρ and µ are the liquid density and viscosity, σ is the surface tension,
and g is the gravitational acceleration.

Bubble expansion from a flat interface to near detachment is simulated for a full
range of Ca (0±01–100) and Bo (0±01–0±5). The maximum gas pressure is found to vary
almost linearly with Ca for 0±01%Ca% 100. This correlation allows the maximum
bubble pressure method for measuring dynamic surface tension to be extended to
viscous liquids. Simulated detached bubble volumes approach static values for Ca' 1,
and asymptote as Q$/% for Ca( 1, in agreement with analytic predictions. In the limit
CaU 0, two singular time domains are identified near the beginning and the end of
bubble growth during which viscous and capillary forces become comparable.

Expansion and contraction experiments were conducted using a viscous silicone oil.
Digitized video images of deforming bubbles compare well with numerical solutions.
It is observed that a bubble contracting at high Ca snaps off.

1. Introduction

The growth and detachment of a submerged bubble from either a tube tip or an
orifice represent a fundamental process in many branches of science. The noise created
by bubbles detaching from an underwater nozzle is of interest in acoustics and has been
studied theoretically and experimentally by Longuet-Higgins, Kerman & Lunde
(1991). A surfactant-laden bubble expanding or contracting at a tube tip has been used
for measuring dynamic surface tension (Edwards, Brenner & Wasan 1993; Miller, Joos
& Faineman 1994). When bubbles are generated from a submerged orifice at a constant
flow rate, the intervals between successive bubbles are found to be chaotic at high Re,
and the experimental set-up has been suggested as a simple tool for studying chaos
(Tritton & Egdell 1993).

The size of detached bubbles has been studied extensively owing to its importance
in direct-contact heat and mass transfer operations in chemical, metallurgical, and

† Permanent address : Mechanical Engineering Department, Louisiana State University, Baton
Rouge, LA 70803-6413, USA.



94 H. Wong, D. Rumschitzki and C. Maldarelli

biomedical systems (Kumar & Kuloor 1970; Clift, Grace & Weber 1978; Tsuge &
Hibino 1983). At low gas-flow rates, a bubble grows quasi-statically and takes on
roughly the static pendant shape, which results from a local balance of capillary and
hydrostatic pressures. When the bubble volume grows beyond a maximum value V

max
,

the buoyancy force exceeds the anchoring surface tension force, and the bubble pinches
off (see, for example, Longuet-Higgins et al. 1991). This complex dynamics and
evolution of the pinching process is ignored by the quasi-static models, which take the
detached volume (V

d
) to be the volume above the neck of the static bubble when the

bubble volume V¯V
max

:

V
d
¯

2π

Bo
Ψ(Bo), (1.1)

where V, V
max

, and V
d

are made dimensionless by a$. The function Ψ(Bo) depends
weakly on Bo and is always less than one. Experiments at slow flow rates have shown
that the detached volume is usually predicted by the upper bound 2π}Bo within a
factor of two (Datta, Napier & Newitt 1950; Van Krevelen & Hoftijzer 1950;
Bhavaraju, Russell & Blanch 1978).

At high flow rates, viscous and inertial forces distort an emerging bubble from the
static shape. These forces oppose the buoyancy force and delay bubble detachment.
The effects of the inertia forces have been the focus of most theoretical and
experimental studies because the Reynolds number (Re¯ ρQ}aµ) is usually high for
bubble formation in interphase contacting equipment. The equipment uses water and
sieve plates with orifice radii in the range from 0±01 to 0±5 cm. Even for flow rates as
low as 0±05 cm$ s−", the Reynolds number is 10 for the larger orifices. To maintain
sufficient heat or mass transfer, the flow rates are usually larger (Q" 10# cm$ s−").
Thus, the inertial forces dominate the viscous forces under operation conditions in
water. This has motivated a series of inviscid modelling studies with accompanying
water experiments that have thoroughly investigated the inertial regime.

1.1. In�iscid models

Davidson & Schuler (1960a) first developed an inviscid model for the growth of a
bubble from a hole in the top plate of a submerged gas chamber. The model assumes
that the bubble grows spherically from a point source, and that the bubble bottom dips
below the top plate. As the bubble grows, the buoyancy force increases and the bubble
accelerates upward. An integral force balance in the vertical direction equates the
acceleration of the added mass of the liquid, ρVc

A
(with the added mass coefficient

c
A

¯ 11}16 for a gas sphere moving normally to a wall), to buoyancy:

We
d

dt 0Vc
A

dz
!

dt 1¯BoV, (1.2)

where z
!
(t) is the height (made dimensionless by a) of the bubble centre above the orifice,

t is time scaled by a$}Q, and We is the Weber number (We¯ ρQ#}σa$). Flow rates
are assumed large enough so that the surface tension force tethering the bubble is
negligible for all but the earliest times. Davidson & Schuler (1960a) distinguished
regimes of constant flow rate and constant gas pressure. For constant flow rate the
above equation can be integrated directly. For constant pressure the gas pressure drop
across the orifice is predicted using an orifice equation to yield the gas flow rate and
hence the bubble radius as a function of time. LaNauze & Harris (1972, 1974)
improved this model to account for the radial liquid acceleration and the gas
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momentum. Walters & Davidson (1963) extended the model to bubbles growing at a
tube tip. They used (1.2) and an orifice equation with c

A
¯ "

#
, the value for a bubble

translating in an infinite medium.
In these spherical models, the bubble is taken as detached when its bottom point is

at the same level as the orifice (point source). With this criterion and with constant flow
rate (i.e. V¯ t), (1.2) can be directly integrated up to ‘detachment’ :

V
d
¯ 93(4c

A
)$

4π :"/& 0We

Bo1
$/&

. (1.3)

(Note that We}Bo¯Q#}ga& is independent of surface tension.) Similar though not
analytic expressions are obtained for the constant pressure case. Comparison of the
results of this model with experiments by Davidson & Schuler (1960a) and LaNauze
& Harris (1974) shows good agreement for the constant flow rate case, but less
consistent agreement for the constant pressure case.

The more sophisticated models of bubble detachment also assume that the growing
bubble is spherical, but the bubble is not allowed to dip below the top plate. The
motion of the bubble is divided into two stages : expansion and lift-off (Kupferberg &
Jameson 1969; Wraith 1971; Ramakrishnan, Kumar & Kuloor 1969; Satyanarayan,
Kumar & Kuloor 1969; Khurana & Kumar 1969; Tsuge & Hibino 1983). In the
expansion stage, the spherical bubble is small and remains in contact with the plate
at a point, because the buoyancy force is weak compared with the surface tension and
inertia forces. Lift-off commences when these forces balance exactly, and this defines
a critical volume. After lift-off the spherical bubble is connected to the plate by a gas
thread that feeds the bubble growth. The bubble is taken as detached when the gas
thread reaches a specific length. Depending on the particular model, the final thread
length ranges from the orifice diameter to the sum of the bubble radius at lift-off plus
the orifice radius.

While the two-stage models are computationally efficient and can be used to fit
detached-volume data, they lack physical insight into the detachment mechanisms.
Marmur & Rubin (1976) (and later Tan & Harris 1986 and Liow & Gray 1988)
constructed a non-spherical model by discretizing the interface into a series of mass
elements. At each element, the hydrostatic and capillary pressures balance the inertia
of the added mass of the liquid. The bubble is assumed pinned at an orifice.
Simulations depict qualitatively though crudely the bubble shape and neck formation
preceding detachment. Detached volumes are obtained by integrating the equations
until the interfaces touch at the neck. The results agree well with experimental data,
indicating that when the necking process is described there is no need for arbitrary lift-
off and detachment criteria.

A numerically exact treatment of the interface shape is Oguz & Prosperetti’s (1993)
boundary integral solution of the inviscid flow field. They analysed the growth of
a bubble from a submerged needle. The gas flow through the needle is supplied by a
constant pressure reservoir, and obeys a Hagen–Poiseuille law. Rather than pinning
the bubble to the needle tip, the contact line moves so as to prevent the contact angle
from becoming smaller than 90°. The computed detached volume V

d
agrees with the

quasi-static prediction (1.1) at low flow rates. As Q becomes large, V
d

asymptotically
increases with Q'/& as given by (1.3). This change in behaviour occurs over one decade
in the characteristic flow rate. Oguz & Prosperetti (1993) also compared their
calculated bubble shapes with the experimental results of Longuet-Higgins et al. (1991)
and obtained qualitative agreement.
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1.2. Viscous models

Clearly the regime of Re( 1 has been completely studied. This paper studies the less
well understood case of Re' 1. This viscous regime was the focus of Davidson &
Schuler’s (1960b) single stage spherical model. In that model, surface tension is again
neglected, and buoyancy balances the Stokes drag in the vertical direction. They show
that for a constant flow rate the detached volume varies with Q$/%, rather than with Q'/&

for inviscid flow. This dependence is in good agreement with their own experimental
results. Two-stage inertial models have also included the effects of viscosity by adding
a viscous drag term to (1.1) in the lift-off stage and to the balance of forces in the
expansion stage (Ramakrishnan et al. 1969; Tsuge & Hibino 1983).

This paper studies the viscous regime with surface tension. Bubble shape and liquid
flow are calculated using a boundary integral method. We also perform experiments in
a viscous silicone oil that ensures high capillary and low Reynolds numbers. The
calculated shapes agree quantitatively with the measured ones during both expansion
and contraction.

As already mentioned, the viscous regime is not usually applicable to conditions for
bubble contacting in water. However, for bubble contacting in more viscous fluids such
as polymer melts, molten metals, and molten glass, the Reynolds number can be
smaller than one under operating conditions (Prosperetti, Oguz & Won 1997). Thus,
one of the purposes of this study is to calculate the detached bubble volume over a wide
range of Ca and Bo. A second objective is to describe the liquid motion, particularly
the interfacial convection, for better understanding of surfactant transport, as detailed
below.

1.3. Methods for measuring dynamic surface tension

A class of methods of measuring dynamic surface tension uses bubbles expanding from
a capillary tip into a surfactant solution. These methods include the maximum bubble
pressure method and the pendant bubble method (Miller et al. 1994). In the maximum
bubble pressure method, bubbles are formed continuously at the tip of a needle, and
the gas pressure is measured relative to the liquid pressure. Typically, the bubble
motion is dominated by surface tension with Ca' 1, Bo' 1, and We' 1. After a
bubble detaches, a new bubble emerges with a rather flat interface, so the gas pressure
is close to zero. As the new bubble grows into a hemisphere, the bubble radius reaches
minimum; the radius of the hemisphere equals the tube radius a. At this instant, the
gas pressure attains a maximum value of 2σ}a, as determined by the Young–Laplace
equation. The surface tension σ is then calculated from this equation using the
measured maximum gas pressure and the tube radius a. This is the surface tension
when the bubble is hemispherical, which occurs at a particular surface age, with the age
of a freshly created bubble taken as zero. At a higher gas flow rate, a new bubble
reaches the hemispherical shape faster, and the surface age of the hemispherical bubble
decreases. Thus, by varying the gas flow rate, the surface tension at different surface
ages is determined.

In the pendant bubble method, a bubble is formed at the tip of a needle and grows
to a pendant shape under the action of gravity (BoC 1) before the growth is
terminated. Surfactant molecules adsorb onto the bubble surface until they reach
equilibrium. This equilibrium surfactant concentration is then perturbed by expanding
or contracting the bubble at Ca' 1 and We' 1. Under these conditions, the bubble
shape resembles that of the static bubble and obeys the Young–Laplace equation. The
surface tension at each instant is obtained by comparing the digitized bubble image
with the static bubble shape predicted by the Young–Laplace equation (Miller et al.
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1993a, b ; Pan, Green & Maldarelli 1995). This again yields the surface tension at
different surface ages. In both methods, the dynamic tension yields the surface
surfactant concentration as a function of time using the surfactant equation of state.
Once the dynamic adsorption is measured, mathematical models of surfactant
transport must be solved and compared to the experimental profiles to determine
surfactant transport parameters such as the diffusion and the kinetic exchange
coefficients. Correct modelling involves an adequate description of the flow field,
particularly the surface convection. To date similar modelling has only accounted for
radial flow (Joos & Rillaerts 1981; MacLeod & Radke 1994). The computed velocity
field developed here will provide a more complete picture of how surfactant is
convected at the low end of the range of Reynolds numbers used for both the maximum
bubble pressure and pendant bubble methods.

The maximum bubble pressure method is usually applicable only for bubbles
expanding at Bo' 1 and Ca' 1. Here, a simple empirical relation is found for the
maximum bubble pressure that allows the maximum bubble pressure method to be
extended to BoC 1 and Ca( 1. Thus, the method can be applied to measure dynamic
tensions for large bubbles and for liquids more viscous than water.

This paper is organized as follows. The mathematical model and the governing
equations are presented in §2. The boundary integral equations are formulated in §3.
These equations are solved by the Nystrom method in §4. Numerical results for bubble
expansion from a planar interface are presented in §5. Bubble shapes for contractions
from a static pendant configuration are presented in §6. Section 7 describes the
experimental set-up, procedures, and results, and the quantitative comparison with
numerical simulations. The conclusions are in §8.

2. Mathematical model

Figure 1 shows the physical situation. A static, clean bubble sits at the tip of a semi-
infinite tube of radius a and is surrounded by a surfactant-free, Newtonian liquid of
viscosity µ and density ρ. At time t¯ 0, the bubble is either expanded or contracted at
a constant volume flow rate Q. The resulting liquid flow is in the creeping flow regime
and obeys the Stokes equations, which in dimensionless form read,

¡[T¯®¡pCa~#u®Bo e
z
¯ 0, (2.1a)

¡[u¯ 0, (2.1b)

where T is the stress tensor with the gravity force incorporated, u is the velocity, p is
the pressure relative to p(rU¢, z¯ 0), ¡ is the gradient operator, and e

z
is an upward-

pointing unit vector. A set of cylindrical coordinates (r, z) is defined with origin at the
tube tip (figure 1). The capillary number Ca3µQ}a#σ and the Bond number Bo3
ρga#}σ measure, respectively, the relative importance of viscous and gravity forces to
capillary forces. In these dimensionless numbers, σ is the surface tension, and g is the
gravitational acceleration. Throughout this paper, all variables are made dimensionless
with a, Q and σ.

Equations (2.1a) and (2.1b) obey the following boundary conditions. At the bubble
surface, the stress satisfies

T[np
g
n¯n(¡[n®zBo). (2.1c)

Here, n is the unit normal outward to the gas, ¡[n is the mean curvature, and p
g
is the

gas pressure relative to the liquid pressure p(rU¢, z¯ 0). The gas flowing into the
bubble is assumed inviscid and of negligible density. Thus, p

g
is a constant; its value
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F 1. A bubble pinned at the tip of a tube.

is unknown and must be determined as part of the solution. Equation (2.1c) states that
the shear stress is zero at the clean bubble surface, and that the jump in the normal
stress is due to the capillary pressure and the difference in the hydrostatic pressures.
Further, at the bubble surface the fluid velocity must satisfy the constant flow rate
condition:

&&
Ω
B

u[ndS¯³1. (2.1d )

The surface integral is over the bubble surface Ω
B
. The positive sign holds for bubble

expansion.
On the tube surface, the fluid obeys the no-slip condition:

u¯ 0. (2.1e)
At infinity,

u¯ 0, T¯ 0. (2.1 f, g)

Given a bubble shape, (2.1) yields the velocity and stress fields of the liquid, and the
gas pressure. The bubble surface is then advanced by the kinematic condition:

dX

dt
¯ (u[n)n, (2.2)

where X is the position of the bubble surface and d}dt is the derivative in the
Lagrangian frame. During bubble deformation, the bubble is pinned to the rim of the
tube. Thus, the contact angle is unspecified and is free to take any value as determined
by the solution of the problem.

3. Boundary integral formulation

The boundary integral formulation is employed in this work to solve the Stokes flow.
The formulation makes use of the linearity of the Stokes equations and superposes flow
fields generated by point forces distributed on the bubble and tube surfaces. The
distribution is initially unknown and is determined by imposing the boundary
conditions on the superposed flow fields. Since the unknowns and the conditions
needed to solve them are all located on the boundary, the dimension of the problem
is reduced by one, a distinct advantage of the boundary integral formulation. In
addition, the point-force solution vanishes at infinity, so the superposed flow fields
already satisfy the boundary conditions at infinity. The strong emphasis of the
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boundary integral formulation on the domain boundary makes it an ideal tool for
problems with deforming or irregular domain boundaries, as in the present nonlinear,
free-boundary problem.

For axisymmetric problems, ring force Green’s functions apply and they obey

¡[T= α ¯®¡p# α~#u# α ¯®
δ(r®r#) δ(z®z# )

2πr#
eα (α¯ r, z), (3.1a)

¡[u# α ¯ 0. (3.1b)

T= α, u# α, and p# α are the stress, velocity, and pressure fields induced by a unit-strength
ring force located at (r# , z# ) and acting in direction eα,α¯ r, z. The superscript on the
Green’s function denotes the direction of the ring force. The symbol δ represents the
delta function. The boundary conditions are those at infinity

T= α U 0, u# α U 0. (3.1c, d )

Solution of (3.1) is obtained most directly by integrating a ring of point forces (Rallison
& Acrivos 1978). For completeness, the Appendix lists the six components of the stress
Green’s function T= r

rr
, T= r

rz
, T= r

zz
, T= z

rr
, T= z

rz
and T= z

zz
and the four components of the velocity

Green’s function u# r
r
, u# r

z
, u# z

r
and u# z

z
.

The Green’s functions lead to the solution of (2.1) through the use of the Lorentz
reciprocal identity :

&&& [u[(Ca¡[T= α)®u# α[(¡[T )] dV¯&& (®n)[(Cau[T= α®u# α[T ) dS (α¯ r, z),

(3.2)

where the volume integration is over the liquid. The identity is derived by first
rearranging the integrand of the volume integral into a divergence form (Pozrikidis
1992, p. 9). The divergence theorem then converts the volume integral into the surface
integral. Substitution of (2.1a) and (3.1a) into the volume integral yields "

#
uα(r# , z# )Ca

when the source point (ring force) lies on the domain boundary (Ladyzhenskaya 1969).
The surface integral covers the bubble surface Ω

B
, the tube surface Ω

T
, and the liquid

surface at infinity. However, the surface integral at infinity vanishes because the
integrand decreases to zero sufficiently fast far away from the bubble. Thus, (3.2) with
the boundary conditions (2.1c) and (2.1e) becomes

"

#
Cauα(r# , z# )¯&&

Ω
B

[Cau[T= α[n®u# α[n(¡[n®zBo®p
g
)] dS

®&&
Ω
T

u# α[T[ndS (α¯ r, z). (3.3)

Note again that the source point at (r# , z# ) lies either on the bubble or the tube surface.
Given a bubble shape (i.e. Ω

B
, and hence n), there are five unknowns in (3.3) : the fluid

velocity on the bubble surface u¯ u
r
e
r
u

z
e
z
, the stress on the tube surface T[n¯

T[e
r
¯T

r
e
r
T

z
e
z
, and the gas pressure p

g
. Putting successively (r# , z# ) on the bubble

surface and on the tube surface yields two equations when α¯ r, and another two
equations when α¯ z. The constant flow rate condition (2.1d) determines the gas
pressure p

g
. Thus, we have five linear equations for the five unknowns.

Once the fluid velocity on the bubble surface is determined, the bubble is advanced
by the kinematic condition (2.2). In this way, the location of the bubble, which is
another unknown, is determined, and the bubble evolves.
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4. Numerical method

For efficient numerical solution of (3.3), the tube length is contracted from infinity
to unity by the transformation

x¯
®z

1®z
. (4.1a)

Equation (3.3) simplifies further when the integration in the azimuthal direction is
evaluated explicitly :

1

4π
Cauα(r# , z# )®&"

!

(T
r
u# α
r
T

z
u# α
z
)

dx

(1®x)#

®s
!
Ca&"

!

[u
r
(T= α

rr
n
r
T= α

rz
n
z
)u

z
(T= α

rz
n
r
T= α

zz
n
z
)] rds

¯®s
!&"

!

u# α[n(¡[n®zBo®p
g
) rds (α¯ r, z). (4.1b)

Here, n
r

and n
z

are the components of n. On the bubble surface, the arc length s is
normalized by the total arc length s

!
¯ s

!
(t). The left-hand side of (4.1b) contains the

unknowns u
r
, u

z
, T

r
and T

z
, and the right-hand side is the source term, which contains

the gas pressure p
g
. In problems where the gas pressure is specified, (4.1b) has sufficient

equations to solve for the unknowns. Here, the gas pressure is unknown and is
determined by the constant flow rate condition (2.1d ) :

2πs
!&"

!

(u
r
n
r
u

z
n
z
) rds¯³1. (4.1c)

The integrals are discretized by converting each into a sum using the Gauss–Legendre
quadrature, i.e. the Nystrom method (Delves & Mohamed 1985). The integrand is then
evaluated at the non-uniformly distributed quadrature points. Placing successively the
source point on the quadrature points yields a system of linear algebraic equations:
[A] [X ]¯ [B] (see Appendix B for details). The unknown vector [X ] consists of 2M2N
elements : u

r
(x

i
) and u

z
(x

i
), i¯ 1 to M, and T

r
(x

j
) and T

z
(x

j
), j¯ 1 to N. The gas

pressure p
g
in the source term [B] is also unknown and is found from the constant flow

rate condition (4.1c) by the following method. First, the source term is decomposed
into two known vectors : [B]¯ [B

"
]p

g
[B

#
]. Each of the vectors is then multiplied by

the inverse of the matrix [A]. This gives u
r
(x

i
) and u

z
(x

i
), i¯ 1 to M, in terms of p

g
.

The velocity components are then substituted into (4.1c) to find p
g
. This completes the

solution for one timestep.
Given a bubble shape, the above numerical solution gives the fluid velocity on the

bubble surface. The bubble is then advanced by the kinematic condition (2.2),
implemented through a second-order Runge–Kutta scheme. For numerical stability,
the maximum normal displacement ∆n is fixed at each timestep. This determines the
timestep ∆t¯∆n}umax

n
, where umax

n
is the maximum normal velocity at the bubble

surface.
The Nystrom method is found to be more efficient than the boundary-element

method for this problem. In the boundary-element method, the integral is expressed as
a double sum, with the outer sum carried over the global domain and the inner over
each element. Each term in the inner sum requires an evaluation of the Green’s
functions, which contain complete elliptic integrals and are computationally costly to
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F 2. Convergence rate in the number of grid points on the bubble. At t¯ 0, a static bubble of
V¯ 14 is expanded at Bo¯ 0±095 and Ca¯ 1±6. Equation (4.1) is solved with ∆t¯ 0±005, N¯ 128,
and M¯ 8, 16, 32, 64 or 128. At t¯ 0±1, we calculate the values of u

n
and u

t
at s¯ 0±5, T

r
and T

z
at

x¯ 0±1, and p
g
. The solutions obtained with M¯ 128 are compared with others to give the relative

errors. The lines are the best power fit.

evaluate. The Nystrom method avoids this subgrid evaluation of the Green’s functions.
Moreover, the Nystrom method can resolve regions with high curvature by defining a
new independent variable to stretch those regions so as to make efficient use of the grid
points.

The analysis of the convergence rate for the Nystrom method is simpler because it
has only a single sum. As an example, figure 2 shows the relative errors for the
unknowns u

n
, u

t
, T

r
, T

z
and p

g
as a function of M, the number of grid points on the

bubble, with N¯ 128 on the needle surface. The convergence rate is close to cubic.
Most cases in this paper are computed with M¯ 32, N¯ 35 and ∆n¯ 2±5¬10−$. To
check the accuracy, two cases with extreme parameter values are computed using twice
the number of quadrature points and half the maximum normal displacement. The
detached bubble volumes differ by less than 1% from those calculated using the usual
values of M, N and ∆n (see figure 9).

5. Bubble expansion from a planar interface

This section studies the expansion of a bubble from a planar interface to the moment
just before detachment. The aim is to compute the detached volume and see how it is
affected by the viscous force. The results apply to bubble contacting processes that
generate bubbles in viscous liquids. The Bond number Bo varies from 0±01 to 0±5, which
covers the range typically encountered in experiments. The capillary number Ca varies
from 0±01 to 100. This range is sufficiently wide to cover not only the case of CaC 1,
where surface tension and viscous forces are equally important, but also the asymptotic
limits where only one of the forces dominates. For Ca' 1, the deforming bubble
resembles closely the static bubble with Ca¯ 0 up to pinching. For Ca( 1, computed
detached volumes merge smoothly into an asymptotic solution valid for CaU¢. Thus,
the whole spectrum of Ca is covered.

We also examine the effect of viscosity on the maximum bubble pressure,
and develop a correlation for the maximum pressure as a function of Ca for
0±01%Ca% 100. This correlation enables the maximum bubble pressure method to be
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applied to viscous liquids for which the dynamic tension no longer equals the
maximum pressure multiplied by "

#
a. Finally, computed surface tangential velocities

shed light on surfactant convective transport on bubbles deforming in a surfactant
solution. The information could help to improve the maximum bubble pressure and
pendant bubble methods. In this section, the time t can be taken as the bubble volume
V because dV}dt¯ 1 and the bubble starts from zero volume.

5.1. General features

Before the main results are presented, it is instructive to look at the general features of
the solutions. Figures 3 and 4 show the evolution of bubbles from a flat interface to an
elongated pendant shape with a thin neck. In figure 3 the Bond number is 0±1 for the
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F 5. The gas pressure as a function of time for the bubble in figure 3(c). Bo¯ 0±1, Ca¯ 1.

five bubbles, whereas in figure 4 and capillary number is kept constant (Ca¯ 1). Thus,
these figures represent two cross-sections of the parameter space. Figure 3 shows that
as Ca increases, the bubble detaches at a larger size. This increases in bubble size is also
present in figure 4 as Bo decreases. (We derive later that the detached bubble volume
varies as (Ca}Bo)$/% as Ca}BoU¢.) A static bubble of V (¯ t)¯ 40 is also plotted in
figure 3(a). It shows that a bubble expanding at Ca¯ 0±02 looks the same as the static
bubble up to the onset of pinch off. At high Ca, the bubble grows around the tube edge
and seems to fold over towards the back of the tube. This change in bubble shape is
not observed in figure 4, where the shape sequences of all bubbles resemble each other
except for the differences in size.

The evolution of the bubble can be explained as follows. As a bubble first emerges
from a tube, gravity is relatively unimportant because the bubble is small. The initial
bubble shape is therefore governed by viscous and capillary forces. The capillary force
alone would form a spherical bubble, with the tip of the tube at one side of the bubble.
As the liquid becomes more viscous, the bubble tends to grow radially from the tube
tip. Thus, figure 3 shows that as Ca increases, the bubble loops around the tube tip and
grows increasingly more towards the back of the tube. As the bubble grows larger, the
gravity force eventually takes over and pulls the bubble off the tube.

The five unknowns p
g
, u

n
, u

t
, T

r
, and T

z
are presented next for the bubble in figure

3(c) to illustrate the general features. Figure 5 shows the evolution of the gas pressure.
At t¯ 0, the interface is flat, but the gas pressure is non-zero because a finite pressure
is needed to push the viscous liquid away to form a bubble. As the bubble grows, its
mean curvature increases and reaches a maximum when the bubble becomes roughly
hemispherical. At Ca¯ 1, part of the gas pressure balances the capillary force, which
is proportional to the mean curvature. Thus, the gas pressure also exhibits a maximum.
As the bubble grows beyond a hemisphere, the overall mean curvature decreases
monotonically, and so does the bubble pressure. This decrease continues until the onset
of pinch-off, at which point the calculated gas pressure increases rapidly. This rapid
increase can be explained as follows. At the beginning of pinch-off, the liquid hydro-
static pressure increases from the bubble apex to the base, and eventually the difference
becomes sufficiently large that the bubble begins to neck. As the neck thins, the
increasing circumferential curvature develops a large capillary pressure locally at the
neck, which drives the subsequent motion of the neck. Since p

g
is declining, the liquid

pressure adjacent to the neck decreases. The resulting ¥p}¥r is balanced by viscous
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F 6. (a) The normal and (b) the tangential surface velocities for the bubble in figure 3(c).
The dashed lines are the analytical solution (5.4). No curve smoothing has been applied. Bo¯ 0±1,
Ca¯ 1.

forces that arise as liquid flows towards the neck to precede snap-off (figure 6(a)). As
the neck shrinks further, this liquid flow cannot produce large enough viscous forces
(figure 6, t¯ 80, velocity gradients are too small). So, the Stokes equations, which
require the viscous and pressure forces to balance, limit ¥p}¥r and thus the depression
in the liquid pressure adjacent to the neck. The only way to balance the rapidly
increasing capillary pressure is by raising the calculated gas pressure, as in figure 5.

We note that the large liquid acceleration at the neck could lead to locally large
inertial effects. Fluid inertia retards the acceleration and acts to balance the
circumferential capillary driving force, so the increase in bubble pressure in figure 5
would be less rapid if not eliminated. The sharp turn depicted in figure 5 is due to
the logarithmic compression of the time units. The calculated rate of change of gas
pressure during pinch-off is about the same as that during the initial bubble formation.

Figure 6 plots the normal and tangential surface velocities u
n

and u
t
as a function of

z for the bubble in figure 3(c). (u
n

is positive outward from the bubble, and u
t
is positive

pointing from the bubble apex to the base.) As shown in figure 6(a), u
n

varies linearly
with z at early times. This linear behaviour can be predicted analytically by noting from
figure 3(c) that the bubble emerges roughly as part of a sphere. Consider a spherical
bubble of instantaneous radius R(t) with its centre at r¯ 0 and z¯ z

!
(t), where (r, z)

are the cylindrical coordinates defined in figure 1. As the bubble expands radially with
velocity dR}dt and rises with velocity dz

!
}dt, it has at its surface a normal velocity

u
n
¯

dR

dt


dz
!

dt 9
³(R#®r#)"/#

R : . (5.1)
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F 7. (a) The normal and (b) the tangential stresses at the tube surface for the case in
figure 3(c). Bo¯ 0±1, Ca¯ 1.

The positive sign holds for the upper hemisphere and the negative sign for the lower.
The condition that the bubble is pinned at the tube tip requires u

n
¯ 0 at r¯ 1 and

z¯ 0. This gives dz
!
}dt in terms of dR}dt, and (5.1) becomes

u
n
¯

®z

³(R#®1)"/#

dR

dt
, (5.2)

where z is the vertical distance from the tube tip (figure 1). The radial velocity dR}dt
is found from dV}dt¯ 1 and

V¯ "

$
π(2R³(R#®1)"/#) (³(R#®1)"/#®R)#. (5.3)

Substitution of dR}dt into (5.2) gives

u
n
¯

z

πR(³(R#®1)"/#®R)#
. (5.4)

This velocity profile is plotted in figure 6(a) for t (¯V)¯ 2 and 5. The excellent
agreement thus explains the linear velocity profiles, and confirms the validity of the
numerical code in this particular situation. As the bubble approaches detachment, u

n

at the neck becomes negative and increases rapidly. The tangential velocity u
t
is always

negative as shown in figure 6(b), indicating that the liquid flow near the bubble is
always upward. Again, as the bubble approaches detachment, u

t
at the neck increases

rapidly. The velocities at t¯ 84±7 show that the lengthscale over which u
n

and u
t
vary

is about the same as the grid spacing. At this point, the grids are not fine enough to
resolve the rapid variation of u

n
and u

t
, and the numerical solution becomes unreliable.

Figure 7 plots the normal and shear stresses T
r
and T

z
on the tube wall for the case

shown in figure 3(c). The normal stress is unbounded at the tube tip and changes sign
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at tE 30. This can be explained by the hinged motion of the bubble surface near the
pinned contact line. Figure 3(c) shows that the bubble surface pivots about the contact
line, so the contact angle in the liquid side varies. For t! 30, the contact angle
decreases, and the liquid around the contact line is squeezed. The contact angle reaches
minimum at tE 30, as shown by the bubble shapes in figure 3(c) and by the normal
surface velocity profiles in figure 6(a). The contact angle then increases, which creates
suction that draws liquid towards the contact line. Variation in the contact angle
generates unbounded liquid pressures at the contact line, as indicated by the local
solutions of Moffatt (1964), who considered Stokes flow in a wedge driven by either
closing or opening the wedge. One side of the wedge wall obeys no-slip and the other
side obeys no-stress. He found that the pressure at the corner (contact line) becomes
positively unbounded during squeezing and negatively unbounded during expansion.
This explains why the normal stress is negatively unbounded at the tube tip at t! 30,
passes through zero at tE 30, and becomes positively unbounded at t" 30. The shear
stress at the tube tip is also unbounded because of a sudden change in the boundary
condition from no-slip on the tube wall to no-stress on the bubble (Schultz & Gervasio
1990; Anderson & Davis 1993; Salamon et al. 1995). The shear stress is negative for
all times because an expanding bubble acts as a source and drives liquid radially away
from the tube tip. Moffatt (1964) also studied Stokes flow around the tip of a wedge
driven by a source away from the tip. The wedge angle was fixed. He found that the
shear stress is regular at the tip for wedge angles % 120°. For wedge angles " 120°,
the shear stress is singular and the order of singularity increases with the contact angle.
This explains why the shear stress in figure 7(b) is regular at tE 30 when the contact
angle reaches a minimum value of roughly 120°. Moreover, the magnitude of the
singularity depends on the magnitude of the liquid flow around the contact line. Fluid
motion near the contact line is weakest at tE 30 as shown in figures 6(a) and 6(b). This
further explains the collapse of the shear stress around tE 30 in figure 7(b).

Salamon et al. (1995) studied numerically the singularity induced by a sudden change
in the boundary condition from no-slip to no-stress. They modelled the exit flow at the
end of a two-dimensional channel, i.e. the die-swell problem. They verified that the
liquid surface approaches the contact line with unbounded curvature, as first suggested
by Schultz & Gervasio (1990). The size of this singular region vanishes as CaU 0; it is
roughly 0±05 of the channel height for Ca¯ 100 and it decreases rapidly to 10−& of the
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displacement per time step. (b) The asymptotic behaviour of the detached bubble volume. The
asymptotic solution is given in (5.10).

channel height for Ca¯ 0±1. Most importantly, Salamon et al. (1995) showed that
failure to capture the unbounded surface curvature has no effect on the bulk flow away
from the singular region. Thus, the numerical solutions presented here are accurate
even when the singular region is much smaller than the resolution of the numerical
scheme.

5.2. Detached bubble �olume

The detached bubble volume V
d

is determined here by extrapolation. By definition, V
d

is the volume above the neck as the neck pinches off. However, the numerical solution,
owing to its limited resolution, cannot follow the bubble evolution to zero neck radius.
A consistent way of finding V

d
is to express the volume V

n
above the neck as a function

of the neck radius r
n
, and extrapolate to zero r

n
. Figure 8 shows such an extrapolation

for the bubble in figure 3(c). We find that the quadratic fit

V
n
(r

n
)¯V

n
(0)O(r#

n
) (5.5)

describes very well the behaviour of V
n
(r

n
), and we use it to find the detached bubble

volume V
d
¯V

n
(0) for all bubbles.

The detached bubble volume is plotted against the capillary number in figure 9(a)
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for various Bond numbers. The data show clearly two different regimes at the zero and
infinite limits of Ca, indicating that two different mechanisms are responsible for
breaking off the bubble. At low Ca, a growing bubble resembles the static bubble
(figure 3(a)). Given Bo, the static bubble has a maximum volume beyond which no
static solution exists (Longuet-Higgins et al. 1991; Michael 1981). Thus, when a bubble
grows beyond the maximum static volume, snap-off ensues. The amount of gas that
can enter the bubble during pinching depends on the pinching time, which can be
estimated by the following methods.

One estimate of the pinching time comes from the numerical solution of necking.
Figure 8 shows how the neck radius r

n
decreases with time t during pinching for the

bubble in figure 3(c). If we define t
d
as the time the neck pinches off, then from figure 8,

t¯ t
d
®cr#

n
as r

n
U 0. (5.6)

This quadratic behaviour is also found in Longuet-Higgins et al. (1991) and Oguz &
Prosperetti (1993). At the beginning of pinching, r

n
E 1. Thus, the fitting constant c in

(5.6) measures roughly the time that the neck shrinks from r
n
E 1 to r

n
¯ 0, i.e. the

pinching time. Figure 10 plots c as a function of Ca for various Bo. The data show that
as CaU 0, cU 7±6Ca, independent of Bo. This linear behaviour arises because the
bubble shape from which pinching starts becomes independent of Ca as CaU 0, and
because the pinching time is controlled by viscous forces ; during pinching the driving
capillary force (circumferential curvature) can only be balanced by viscous forces, even
in the limit CaU 0 (see §5.4). The constant of proportionality is independent of Bo
because pinching is a local event and because the neck radius of the marginally stable
static bubble is insensitive to Bo (Longuet-Higgins et al. 1991). This explains the
behaviour of c observed in figure 10.

This estimate of the pinching time can also be derived from the growth rate of an
unstable perturbation. A static bubble with the maximum allowable volume is unstable
to infinitesimal perturbations. The growth rate of an unstable perturbation is
proportional to σ}aµ, which is the same as that of an unstable perturbation to a viscous
liquid thread (Chandrasekhar 1961). By assuming that the nonlinear effects do not slow
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the pinching significantly, the pinching time, made dimensionless by a$}Q, is
µQ}σa#¯Ca. Thus, as CaU 0, the amount of gas that enters the bubble during
pinching is O(Ca). We therefore expect that the calculated total bubble volume at
detachment and the detached volume should be bounded from below and approach the
static total and detached volumes as CaU 0. (The static detached volume is defined as
the volume above the neck at the maximum volume.) Table 1 lists the detached volume
and total bubble volume at detachment for Ca¯ 0±02 to 100 and Bo¯ 0±01 to 0±5. The
static results are determined by a numerical solution of the Young–Laplace equation,
and are accurate to four significant figures. For Bo¯ 0±01, where a direct comparison
is possible, our static results agree with that of Longuet-Higgins et al. (1991) to within
0±5%. We note from the table that for the lowest values of Ca (¯ 0±02) the detached
and total volumes are still a few per cent larger than the static values. We expect smaller
differences (E 0±02) at this value of Ca. We note that this difference is not due to
numerical error; we have recomputed the case with Bo¯ 0±5 and Ca¯ 0±02 with
double the number of grid points and half the maximum displacement per timestep,
and obtained the same total and detached volumes.

At high Ca, the detached bubble volume is determined by a balance between
buoyancy and viscous forces. To derive an analytic solution valid for high Ca, we
consider the motion of a spherical bubble expanding radially with unit volume
expansion rate (i.e. dV}dt¯ 1), and subject to buoyancy and viscous forces. At each
instant, a balance of the forces in the vertical direction gives (Davidson & Schuler
1960b)

BoV¯ 4πCaUR, (5.7)

where V is the volume of the bubble, U its translational velocity, and R its radius. Thus,
R¯ (3V}4π)"/$, and U¯dz

!
}dt¯dz

!
}dV, where z

!
is the vertical displacement of the

bubble centre. Substitution into (5.7) gives

dz
!

dV
¯

1

(4π)#/$ 3"/$

Bo

Ca
V #/$. (5.8)

The solution of this equation with the initial condition that z
!
¯ 0 at V¯ 0 is

z
!
¯

1

5 0
3

4π1
#/$ Bo

Ca
V &/$. (5.9)

We define the detached bubble volume V
d

as the volume when z
!
¯R. Thus,

V
d
¯ 04π

3 1
"/% 05Ca

Bo 1
$/%

. (5.10)

Because (5.10) is derived in the absence of a tube, it is valid only for V
d
( 1 or

Ca}BoU¢ (i.e. aU 0). Figure 9(b) plots V
d

versus Ca}Bo for various Bo. At high
Ca}Bo, the data with different Bo collapse into a single curve and approach the
asymptotic solution. Thus, the detached bubble volume is found for 0!Ca!¢.

5.3. Maximum gas pressure p
m

In using the maximum bubble pressure method for measuring dynamic surface tension,
viscous forces are always present but neglected. To apply the method to more viscous
liquids, it is necessary to determine the effects of viscous forces on the maximum
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V
d
}V(t

d
)

Ca Bo
0±01 0±02 0±05 0±1 0±2 0±5

100 5468}5498 3452}3471 1857}1868 1152}1160 714}719 377±4}380±0
50 3330}3349 2089}2102 1125}1132 701}706 436}439 230±8}232±7
20 1867}1878 1142}1149 604}609 375}379 232}234 123}125
10 1306}1314 774}780 398}401 243}246 149}151 78±3}79±3
5 987}994 562}567 276}279 164}166 98±7}100 51±0}52±0
2 762}767 411}414 188}191 107}109 61±9}63±5 31±0}31±8
1 671}676 351}354 153}155 83±7}85±2 46±9}48±0 22±6}23±4
0±5 620}625 314}317 131}133 69±6}71±0 37±7}38±8 17±4}18±2
0±2 577}581 287}289 115}117 58±9}60±3 30±7}31±8 13±5}14±3
0±1 564}568 275}277 109}110 54±4}55±7 27±7}28±8 11±9}12±6
0±05 — — — 51±6}52±9 25±9}27±0 10±8}11±6
0±02 — — — 49±4}50±6 24±4}25±5 9±96}10±8
"Static 531±1}531±2 256±9}257±0 98.24}98±44 47±59}48±00 23±01}23±80 8±432}9±835

" Volume above the neck}total bubble volume for the largest allowable static bubbles.

T 1. Detached bubble volume V
d

and total bubble volume at detachment V(t
d
)

pressure. Figure 11 plots the gas pressure as a function of time for the five bubbles in
figure 3. The curves all exhibit a maximum, the magnitude of which increases with Ca.
The relation between the maximum gas pressure p

m
and Ca is shown more explicitly

in figure 12, which plots the difference between p
m

and its static value p
s

(i.e. p
m

at
Ca¯ 0) against Ca for Bo¯ 0±01, 0±1 and 0±5. (The static maximum pressure p

s

depends on Bo ; its values for Bo¯ 0±01, 0±1 and 0±5 are listed in figure 12.)
Interestingly, the data for different Bo collapse into a single curve and are well fitted
by an essentially linear power law:

p
m
(Bo,Ca)¯ p

s
(Bo)1±11Ca"

±
!%. (5.11)

It seems that the gravity force affects only the static maximum pressure p
s
, but has no

effect on the difference between the dynamic and static maximum pressures. This
simple power fit holds for 0±01%Ca% 100 and 0±01%Bo% 0±5, and is likely to be
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of the Young–Laplace equation are also listed.

valid for wider ranges of Ca and Bo. Thus, the maximum bubble pressure method can
be used for the measurement of dynamic tension in viscous liquids where the maximum
pressure is not simply given by p

s
(Bo).

Figure 11 shows that as Ca increases the gas pressure peaks at earlier times, and the
peak is less pronounced. This can be explained by considering two limiting cases of
CaU 0 and CaU¢. As CaU 0, the gas pressure for small Bo reaches maximum when
the bubble is roughly hemispherical at t (¯V)E #

$
π with a value p

m
E 2. As CaU¢, the

maximum gas pressure occurs at t¯ 0. This is because with zero surface tension the gas
pressure is balanced mainly by the normal viscous stress at the bubble surface, as
shown by (2.1c). The normal viscous stress scales with the normal surface velocity u

n
,

which is largest at t¯ 0 to satisfy the constant flow rate condition. Thus, the viscous
resistance is largest at t¯ 0. The initial gas pressure at t¯ 0 is found from the
numerical solution as p

g
¯ 1±35Ca, for 0!Ca!¢ (see §5.4). Thus, as CaU¢, the

maximum gas pressure occurs at t¯ 0 and its magnitude varies linearly with Ca.
Figure 11 reflects the transition between the zero and infinite Ca limits.

5.4. Singular time domains in the limit CaU 0

In the limit CaU 0, viscous forces are negligible compared with capillary forces during
growth of a bubble, except in the beginning tCCa and in the end t

d
®tCCa during

which the two forces become comparable. (t
d

is the time for the bubble to detach.)
These two singular time domains are discussed separately.



112 H. Wong, D. Rumschitzki and C. Maldarelli

0.2

0.4

r

un

0 0.8 1.2

Numerical
Spherical cap

0.4

0.6

F 13. Normal surface velocities at t¯ 0. The numerical solution is independent of Ca or
Bo. The spherical cap solution is given in (5.13).

5.4.1 Start-up singularity

As a static bubble starts to expand at t¯ 0, viscous forces completely govern the
motion of the bubble even in the limit CaU 0. This is shown by the normal stress
balance in (2.1c) :

p
g
®pCan[¡u[n¯¡[n. (5.12)

At t! 0, the bubble is in equilibrium, so p¯®zBo and p
g
zBo¯¡[n. At t¯ 0, the

gas pressure p
g
increases by ∆p

g
to deliver a unit volume flow rate. The liquid pressure

at the bubble surface increases instantaneously by ∆p¯∆p(s), but the bubble shape
remains the same and will take some time to adjust to the new gas pressure. The normal
stress balance at t¯ 0 reads

∆p
g
¯∆p®Can[¡u[n. (5.13)

Thus, at t¯ 0 the capillary force ¡[n drops out completely, and the step change in gas
pressure is balanced by only the normal stress in the liquid. To illustrate this point
explicitly, figure 13 graphs the computed normal surface velocity at t¯ 0. This same
velocity profile is obtained for different Ca, and for different Bo because the bubble
surface is initially flat. On the same figure is also plotted the normal velocity of a bubble
growing as part of a sphere, which is the shape of the bubble when the capillary force
dominates. This normal velocity profile is parabolic :

u
n
¯

2

π
(1®r#), (5.14)

as determined from (5.4) by substituting the function z¯ z(r) that describes a
hemisphere of radius R, and taking the limit RU¢. The computed normal velocity
profile is clearly not parabolic, indicating that the viscous force dominates the capillary
force at t¯ 0.

The singular start-up time where viscous forces dominate lasts for only tCCa. This
is shown again by the normal stress balance. In time t, the normal displacement of the
bubble surface is ∆nC u

n
tC t because u

n
C 1, as required by the unit flow rate

condition (4.1c). The computed normal velocity in figure 13 is also the bubble shape
at t¯∆t, which differs from the static bubble shape (i.e. spherical cap). This difference
generates a capillary force : ∆(¡[n)C∆n}∆s#C∆nC t, where ∆sC 1 is the lengthscale
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demonstrate the transition timescale.

of the arc length s. Thus, if tCCa, the capillary and viscous terms in (5.12) are
comparable, and they balance the pressure jump (CCa) across the bubble surface. For
t(Ca, the bubble surface advances by ∆nC t, so both the capillary term and the
pressure jump must change by O(t). The viscous force, however, remains O(Ca) as
shown in (5.12). Thus, for t(Ca, the bubble motion is governed by the capillary force.
This transition from viscous to capillary force dominated motion is shown explicitly in
figure 14. In figure 14(a), the bubble height h is plotted as a function of time for two
extreme cases : Ca¯ 0 and 100. The static bubble height (h

s
) can be varied as a function

of time because here time is equivalent to bubble volume. Figure 14(b) plots the ratio
h}h

s
as a function of time for five bubbles with Ca¯ 0±01, 0±02, 0±05, 0±1 and 100. It

shows that all the curves start from the curve for Ca¯ 100, which is dominated by
viscous forces. At later times, the curves merge into the static curve, which is
dominated by capillary forces. For a bubble expanding at a given small Ca, the
transition finishes at tCCa, in agreement with the above scaling argument. The results
shown in figure 14 are computed using Bo¯ 0±1, but this transition at tCCa is also
observed for other Bo. We would like to emphasize that the existence of this start-up
singularity is independent of the initial bubble shape. The conclusions hold for initial
static shapes that are not planar.

At t¯ 0, the step change in gas pressure ∆p
g

varies linearly with Ca. Owing to the
start-up singularity, the capillary force vanishes at t¯ 0. The Stokes problem then
reduces to one without surface tension. For such a quasi-static Stokes flow, the velocity
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F 15. Bubble height versus time near detachment. Bo¯ 0±1.

field is independent of viscosity, and the stresses are proportional to viscosity. Thus, at
t¯ 0 the normal and tangential surface velocities are independent of Ca (figure 13), but
the step change in gas pressure and the stresses on the tube wall are proportional to Ca.
These predictions are all confirmed by the numerical solutions. Particularly, the step
change in gas pressure at t¯ 0 obeys

∆p
g
¯ 1±35Ca, (5.15)

which holds for 0!Ca!¢. In this problem, p
g
¯∆p

g
at t¯ 0 because the bubble

surface is initially flat.

5.4.2. Pinching singularity

In the limit CaU 0, viscous forces are also important near the end of bubble
formation in time t

d
®tCCa, as discussed in §5.2. Here, we focus on the bubble height

and see how it is affected by this singular time domain. Figure 15 plots the bubble
height as a function of time to compare the rate of pinch-off at different Ca. Large
pinch-off rates are signified by steep increases in the apex height. As the capillary
number decreases, the pinch-off process accelerates. Note that the pinch-off rate is
significantly faster for Ca¯ 0±02 than for Ca¯ 0±1. Figure 16 provides a different
perspective on the effect of viscosity on pinch-off at low Ca. The bubble height at
V¯ 10 is plotted as a function of Ca for different Bo. At high Ca, the data for different
Bo collapse into a curve as the buoyancy force is negligible at this bubble volume
compared to viscous forces. As Ca decreases, the bubble heights for Bo% 0±2 approach
the static values, but the data for Bo¯ 0±5 do not seem to be reaching a plateau. At
Bo¯ 0±5, the maximum allowable static bubble volume is 9±835 (table 1). Thus, the
bubble will detach before it reaches V¯ 10 as CaU 0. However, the bubble expanding
at Ca¯ 0±02 has not detached at V¯ 10 as the detached bubble volume at Ca¯ 0±02
is greater than 10 (table 1). Thus, the case with Bo¯ 0±5 shows that as Ca decreases
the viscous force is weaker and the bubble is closer to detachment.

6. Bubble contraction

This section presents numerical simulations for bubble contraction from a static
pendant shape. Pendant bubble contraction is important in the pendant-bubble
method for the measurement of dynamic surface tension owing to surfactant exchange
at the bubble surface. As mentioned in §1, the pendant bubble method forms a bubble
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F 16. Bubble height at a particular bubble volume (V¯ 10) as a function of Ca.
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F 17. Bubble contraction at a fixed Bond number (Bo¯ 0±1)
and different capillary numbers.

in a surfactant solution, and waits until an equilibrium monolayer adsorbs onto the
surface. The bubble is then expanded or contracted at low capillary numbers, causing
kinetic and diffusive exchange of surfactant between the bulk and surface. The surface
tension at each instant is determined by fitting the digitized bubble image to the
Young–Laplace solutions. The dynamic tension is a vehicle for studying surfactant
transport.

Figure 17 plots the contraction of four bubbles at Bo¯ 0±1 and Ca¯ 0±1, 1, 10 and
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100. The bubbles start from the same static bubble shape and volume (V¯ 45). For the
two low Ca runs, the bubble retracts smoothly back to the tube. However, for the other
high Ca runs, the simulations suggest that the bubbles snap off. This is because at high
Ca, the normal viscous force compresses the surface of the elongated bubble, and the
neck of the bubble vanishes faster than the head. The surface tension at high Ca is too
weak to pull the bubble back, and a small bubble is left behind. We have observed this
bubble break-up in experiments, as described below in §7. Tanveer & Vasconcelos
(1995) have predicted similar break-up for two-dimensional bubbles contracting in
Stokes flow.

Our simulations indicate that for Ca% 0±1 the bubble retracts smoothly into the
tube following essentially the shape of the static bubble. Hence, it is valid to use the
Young–Laplace equation to determine the tension from the shape when Ca% 0±1. This
capillary number restriction also holds for expansion. All the contraction runs in figure
17 exhibit tangential flow on the bubble surface pointing from the apex towards the
needle tip. The magnitude of the tangential flow is roughly the same as that of the
normal velocity. This suggests that the previous models of surfactant transport, which
have only considered a normal velocity, should include the contribution of the surface
tangential flow as well.

7. Experiment

A series of expansion and contraction experiments was performed to check if the
mathematical model captures the physics of bubble motion accurately. The model
assumes that the tube is semi-infinite in length with zero wall thickness, that the liquid
is unbounded, and that the gas is incompressible. These conditions simplify the
numerical simulation, but are not realizable in experiments. Nevertheless, excellent
agreement was obtained between the numerical and experimental results, indicating
that the assumptions are reasonable.

The apparatus is illustrated in figure 18. An optical system, consisting of a train of
pin-hole and lens, forms a collimated light beam of 2±5 cm in diameter from a white
light source. The light beam is projected onto the bubble to form a shadow, which is
captured by a video camera. The video output is fed into a digitization board (Data
Translation, DT2861), installed on a 486 PC. The bubble image is also displayed by a
video monitor and saved on a VCR. The gas flow that drives the bubble is controlled
by a d.c. motor (Newport, 860A Motorizer, S1058). The direction and speed of the
motor are regulated by a power source. Depending on the operating direction, the
motor either pushes or draws the plunger of a 1±25 ml syringe, connected via a thin
Teflon tube to a three-way miniature solenoid valve (Lee Co.). A computer operates
the valve controller and the motor power source. One outlet of the valve leads to an
inverted stainless steel needle (Rame-hart, 18 gauge, i.d. 0±7 mm, o.d. 1±2 mm), the
other to a run-off. The needle tip where the bubble emerges is submerged in liquid in
a rectangular quartz cell (2±5¬4¬4±5 cm). For all the experiments shown below, the
contact line appears to be pinned at the inner edge of the needle tip.

The liquid used in this set of experiments was a silicone oil (Dow-Corning, Series
200, 10000 cs fluid). At 22 °C, the viscosity of the silicone oil is (HAAKE Rotovisco
RV20 viscometer) 12±0 sPa, the density is (Troemner density meter) 968 kg m−$, and
the surface tension is 20±5 mN m−" as measured by a pendant-bubble tensiometer. Air
was used to form the bubble.

In a typical run, the syringe, the Teflon tubing, the needle, and the quartz cell are
thoroughly cleaned. The d.c. motor is set at a low speed to form a bubble slowly. When
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F 19. A typical plot of the bubble volume as a function of time.

the bubble reaches a desirable size, the valve is turned off, and the bubble relaxes to an
equilibrium shape. The speed and direction of the motor are adjusted. The frame
grabber is then activated, and immediately the valve is turned on. Fifteen images of the
deforming bubble are acquired and digitized by the frame grabber at evenly spaced
time intervals. The time interval is chosen so that the total acquisition time is sufficient
to capture the complete evolution of the bubble. The digitized images are stored on the
digitization board, and are retrieved after the run for edge detection. The edge is
located by interpolating the intensity values of two adjacent pixels. This yields bubble
shapes with subpixel resolution. The shapes are then saved for further analysis.

To minimize the effect of air compressibility, the syringe and most of the Teflon
tubing were filled with water. Only the last section of the delivery line was filled with
air. This reduces the total gas volume, so that the change in volume owing to variations
in gas pressure is small compared with the bubble volume. Thus, the gas can be treated
as incompressible. Figure 19 plots bubble volume versus time for an expansion
experiment. The data show that the bubble volume increases linearly with time after the
gas flow is turned on at time E 2 s, indicating that air compressibility is not important.
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F 20. Comparison of experimental and numerical results : (a) bubble expansion from
V¯ 14±4 and (b) bubble contraction from V¯ 29±8.

Time = 0(a) 1.1 s(b)

1.2 s(c) 1.4 s(d )

F 21. A contraction experiment at Ca¯ 10 and Bo¯ 0±1 to illustrate the formation of a
satellite bubble.

A linear fit gives the volume flow rate Q, which is used to calculate Ca in the numerical
simulation.

Two typical runs are presented in figure 20 as solid lines. Figure 20(a) shows bubble
expansion from V¯ 14±4 at Ca¯ 1±55 and Bo¯ 0±0945, whereas figure 20(b) displays
a contraction from V¯ 29±8 at Ca¯ 3±96 and Bo¯ 0±0979. Also plotted in open
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circles are the numerical solutions, which are obtained without any adjustable
parameter. The excellent agreement confirms the validity of the assumptions made in
the mathematical model.

Numerical simulations in §6 have hinted that a contracting bubble may snap off at
high Ca. To verify this prediction, a series of contraction experiments was performed
and bubble break-up was indeed observed at high Ca. A typical run at Ca¯ 10 is
shown in figure 21. It is evident that the contracting bubble breaks up, forming a
satellite bubble much smaller than the original static bubble.

8. Conclusions

This work studies the motion of a pinned bubble expanding or contracting from a
submerged capillary tip at Re' 1. Boundary integral solutions of bubble shape, gas
pressure, and liquid flow are computed for 0±01%Ca% 100 and 0±01%Bo% 0±5.
These simulations show that detached bubble volumes approach static values as Ca
decreases, and merge into an asymptotic solution at high Ca. Thus, the detached
bubble volume is obtained for 0!Ca!¢. The results are useful as a guide for
predicting the size of bubbles generated in viscous liquids. These calculations also
complement the literature which focuses mainly on inertial effects (Oguz & Prosperetti
1993).

From the bubble expansion results, a correlation has emerged relating the maximum
bubble pressure to Ca ((5±11) and figure 12). For small Ca, the maximum pressure
occurs when the bubble is hemispherical with radius equal to the tube radius. As Ca
increases, the gas pressure peaks at earlier times and the maximum value increases
owing to viscous resistance to bubble growth. To measure the dynamic tension, one
usually measures the maximum pressure of expanding bubbles at low Ca, since the
maximum pressure is simply related to the tension and the tube radius. The correlation
derived in this work extends the maximum bubble pressure method to more viscous
liquids for which the maximum pressure no longer occurs at the point where the bubble
achieves a hemispherical shape.

In the limit CaU 0, two singular intervals in time have been identified at which the
motion of the bubble is dominated by both the viscous and capillary forces. The first
is at tCCa during which the step change in gas pressure is balanced mainly by the
normal viscous stress. The second is during pinch-off of the neck which is driven by a
capillary instability. The rapid contraction of the neck brings the viscous force to the
same order as the capillary force. These singularities become apparent in plots of the
bubble height as a function of time for different capillary numbers (figures 14, 15 and
16).

Simulations of the contraction of pendant bubbles identify two separate regimes.
For Ca% 1, the bubble retracts smoothly back into the tube. However, for larger Ca,
the bubble head retracts radially, and the simulations suggest snap-off of a satellite
bubble (figure 17).

Experiments on expansion and contraction of pendant bubbles in a silicone oil
confirm the validity of the numerical simulations. Experimental loci of bubble shapes
are obtained by digitizing video images of the deforming bubble. These experimental
loci are in excellent agreement with computed contours. It is observed that a bubble
contracting at high Ca snaps off to leave behind a small residue bubble (figure 21).
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Appendix A. The Green’s functions and local expansions

This Appendix lists the velocity u# α and stress T= α at a point P(r, z) generated by a ring
force of unit strength located at P= (r# , z# ) and pointing in direction eα, α¯ r, z. Define
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where K(m) and E(m) are the complete elliptic integral of the first and the second kind,
respectively. Then,
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The local expansions of the Green’s functions as P(r, z)UP= (r# , z# ) are given here. Let
the curve on which P and P= lie have at P= a tangent circle of radius R and centre O.
Then, as PUP= , we can expand (r, z) in terms of (r# , z# ) in a Taylor series :
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is a unit vector along OP= , and ∆s¯ s(P)®s(P= ) is the arclength

between P and P= , with the arclength s measured clockwise around O. Then, as
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The next order term in the expansions is at most O(∆s ln r∆sr).

Appendix B. Implementation of the Nystrom method

The best way to illustrate the Nystrom method is by an example. Consider the
following integral from (4.1a) :
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where x
i

and w
i

are the abscissas and weights of the N-point Gauss–Legendre
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quadrature. The sum in (B 1) contains N unknowns: T
r
(x

i
), i¯ 1,… ,N. Putting the

source point x# at x
i
, i¯ 1 to N, generates N equations. The velocity Green’s function
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The integrand in the square brackets varies as (x®x# ) ln rx®x# r as xUx# , and the
Gauss–Legendre quadrature can perform the integration. The Gauss–Legendre
quadrature converges exponentially for infinitely differentiable integrands. In the
present case, the convergence rate is cubic in N. However, by removing the next highest
singular term from the integrand, one can improve the convergence rate systematically.

The integrals in (4.1b) with the stress Green’s functions are treated similarly.
Although the singularity of a stress Green’s function is of higher order, no subtraction
is needed because the stress Green’s functions always appear as a pair and the singular
terms cancel between the pair. For example, close to a source point s# ,

T= r
rr
(s# ; s)U

λ
!

s®s#
λ

"
…, (B 4)

where λ
!

and λ
"

are independent of s. Appendix A shows that for a pair of stress
Green’s functions in (4.1b) the leading singular terms multiplied by the appropriate
components of the surface normal cancel exactly. Proper cancellation requires that the
normal vector be uniquely defined at each point on the surface (i.e. the Lyapunov
condition). Thus, the integrands containing the stress Green’s functions are well
behaved and no subtraction is needed.
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